RTC8(SBUS&PPM 转 CAN 协议模块)使用说明书

一、硬件资源介绍

1. CAN 输入输出接口:

- (1) 用于收发 CAN 数据。
- (2) 工作波特率范围 5Kbit/s ~1Mbit/s
- 2. 终端电阻 120 Ω:
 - (1)短路跳线帽,可以吸收信号反射及回波。

3. 升级按键:

- (1) 按住升级按键 USB 接入电脑即可进入升级模式
- 4. 电源指示灯:
 - (1) 设备上电后绿亮起

5. USB 接口:

(1) 与 PC 端连接调参,数据观察

(2) 与 PC 端连接后进行固件升级

6. SBUS/PPM 输入端口:

- (1) SBUS 信号输入
- (2) PPM 信号输入

7. 通讯状态指示灯

- (1) 当 SBUS 信号输入时蓝灯闪 2 下灭
- (2)当 PPM 信号输入时蓝灯闪 3 下灭
- (3) 当接收到有效 CAN 数据时(非屏蔽 ID 的数据) 红灯闪 2 下灭

1. 使用 USB 线连接电脑与 SBUS_PPM_to_CAN 模块

2. 连接成功后电脑设备管理器会有一个新的 COM 口

	Zadig – X Device Options Help
Zadig – Options Help	seus_ppm_to_CAN 步骤51 ~□edt
Del MS 116 USB Optical Mouse Edi Del MS 116 USB Optical Mouse 2 Del MS 116 USB Optical Mouse 2 Del MS 216 Wred Keyboard (Interface I) 2 Del MS 216 Wred Keyboard (Interface I) 1 Kingst Logic Analyzer 1 XCAN-USB 1	Driver usbeer (v10.0.19041.2130) tibusb-win32 (v1.2.6.0) Work Information Work S8 (fbusb) Work Information Work S8 (fbusb) Work Information Work S8 (fbusb) Work Information Work S8 (fbusb) Book Work S8 (fbusb) Book S8 (fbusb) Book
STM32 STunk Qualcom QCA9565 Bluetooth 4.0 步骤4 USB2.0-CRW Mass Storage Device 12 Junk 22.7.76	install litter Driver Extract Files (Don't Install)

三、固件升级

1. 按住升级按键(不要给模块供电), USB 插入电脑, 蓝灯开始闪 烁, 松开升级按键

2. 此时弹出 U 盘需要格式化,不需要理会

3. 打开固件升级软件

田 472	19 KK (H 197)	*
SBUS_PPM_to_CAN_APP_V1.0.img	2023/4/4 11:37	17
🍓 SBUS_PPM_to_CAN_V1.0.exe - 💐	2023/4/4 13:45	应
🖪 SBUS_to_CAN使用说明书.docx	2023/4/4 15:32	D
🗞 固件升级.exe	2023/3/29 16:08	应
📴 驱动安装.exe	2023/2/14 9:58	应
	<u></u>	
👒 Win32 Disk Imager	×	1
Image File	Device	🔊 Complete 🛛 🗸
Desktop/SBUS_to_CAN_APP/SBUS_PPM_to_CAN_AD	PP_V1.0.img 📔 [I:\] ▼	Complete X
Copy MD5 Hash:	1	Write Successful.
Version: 0.9.5 Cancel Read	Write Exit	ОК
Write data in 'Image File' to 'Device'		

(1) 选择刚才弹出的磁盘号

(2) 选择升级的固件

(3) 写入程序, 弹出写入成功

(4) 重新插拔 USB 升级成功

注意:如果重新上电后蓝灯亮起,红灯快闪,表示固件异常请确认固件正确后,重复以上操作

四、地面站使用

- 1. 设备状态信息显示
 - (1) CAN:

显示当前接收到的 CAN 数据(过滤 ID 之后的)

(2) SBUS:

如果有 SBUS 信号输入那么会显示 SBUS 通道数据

CAN	SDUS PPM			
CH1		999	СН9	1842
CH2		999	CH10	1068
СНЗ		166	CH11	1068
CH4		999	CH12	1068
CH5		1832	CH13	1024
CH6		999	CH14	1024
CH7		999	CH15	1024
CH8		999	CH16	1024
CH17	CH18		RSSI FS	

(3) PPM:

如果有 PPM 信号输入那么会显示 PPM 通道数据

CAN SBUS P	PM			
CH1		999	СН9	1000
СН2		998	CH10	1000
СНЗ 🔼		767	CH11	1000
CH4		999	CH12	1000
CH5		1520	CH13	1000
СН6		999	CH14	1000
СН7		999	CH15	1000
CH8		998	CH16	1000

2. 设备调试信息

Debug:

读取成功	
USB开关状态:关闭	
USB开关状态:设备打开成功.	
设备名: \\.\libusb0-00020xc251-0x3505	
厂商Radiolink	
产品SBUS_PPM_to_CAN	
序列号0001A000000	
读取成功	

3. 参数配置

注意!

①每次连接设备将会先自动获取一次参数至 PC 端。

②所有参数在修改完毕之后必须写入点击"写入参数"按钮否则 参数将不会设置成功。

(1) 时序配置

	 同步段(SS) 			
	 ● 传播时间段(PTS) 			
	 相位缓冲段1(PBS1) 			
	 相位缓冲段2(PBS2) 			
	这些段又由可称为 Time Quantur	n(以下称为Tq)的最小时间单位构成。		
	1 位分为4 个段,每个段又由若	干个 Tq 构成,这称为位时序。		
	1 位由多少个 Tg 构成、每个段	又由多少个 Tq 构成等,可以任意设定作	立时序。	通过设定
	位时序,多个单元可同时采样,也可	任意设定采样点。各段的作用和 Tq 数	如表 34.	1.2 所示:
CAN Timing CAN Acceptance Filter CAN Send	段名称	段的作用	Tq	数
	同步段	多个连接在总线上的单元通过此段实现时序	1Tq	8~
NOMINAL BIT TIME	(SS: Synchronization Segment)	调整,同步进行接收和发送的工作。由隐性电		25Tg
SYNC_SEG BIT SEGMENT 1 (BS1) BIT SEGMENT 2 (BS2)		平到显性电平的边沿或由显性电平到隐性电		
		平边沿最好出现在此段中。		
	传播时间段	用于吸收网络上的物理延迟的段。	1~8Tg	
	(PTS: Propagation Time Segment)	所谓的网络的物理延迟指发送单元的输出延		
SAMPLE POINT TRANSMIT POINT		迟、总线上信号的传播延迟、接收单元的输入		
		延迟。		
Database Entry : 500 kbit/s 💌		这个段的时间为以上各延迟时间的和的两倍。		
Bit tate = Clock Frequency / ((1+BSI+BS2) * BRP)	相位缓冲段 1	当信号边沿不能被包含于 SS 段中时, 可在此	1~8Tq	
	(PBS1: Phase Buffer Segment 1)	段进行补偿。		
500.000 kbit/s = 8M / ((1 + 13 + 2))* 1)	相位缓冲段 2	由于各单元以各自独立的时钟工作,细微的时	2~8Tq	
234	(PBS2: Phase Buffer Segment 2)	钟误差会累积起来,PBS 段可用于吸收此误		
Sample = (1 + BS1) / (1+ BS4++ BS2) = 871 %		差。		
		通过对相位缓冲段加减 SJW 吸收误差。		
Resynchronization jump width : 1		SJW 加大后允许误差加大,但通信速度下		
		降。		
5	再同步补偿宽度	因时钟频率偏差、传送延迟等,各单元有同步	1∼4Tq	
	(SJW: reSynchronization Jump Width)	误差。SJW 为补偿此误差的最大值。		

←	——— 话	定示例	ij1 bit=10	Tq —		\rightarrow
SS (1Tq)	PTS (3Tq)		PBS1 (3Tq)		PBS2 _(3Tq)	

①预置波特率选择:当选择后会自动设置 BS1,BS2,BRP,SJW 参数,当预 设值不满足要求时可以根据实际情况手动调整 BS1,BS2,BRP,SJW 参数 ②BS1:相位缓冲段 1

③BS2:相位缓冲段 2

④BRP:单个 Tq 的时长

⑤SJW:再同步补偿宽度(值设的越大,容忍波特率误差越大)

注意:

①同步段恒定为1

②PTS 和 BS1 已经合并,设置 BS1 宽度等于设置 PTS+BS1 宽度③Sample:根据 BS1,BS2 自动计算采样点

配置参考文献:

https://blog.csdn.net/piaolingyekong/article/details/124276670

(2) ID 过滤配置

CAN Timing	GAN Acceptance Filter CA	N Send
2	Running Mode : Prei	install 💌 1
) Sta C Exte	ndard (11-bit ID) ended (29-bit ID)	auli ¥alues 3
	Preinstall	
	🗸 Remote Request	
	Get 32byte ID : 0	(Hex)
1	Get 8byte_1 ID : 1	(Hex)
4	Get 8byte_2 ID : 2	(Hex)
	Get 8byte_3 ID : 3	(Hex)
	Get 8byte_4 ID : 4	(Hex)
5	Filter ID : 0	(Hex)
11	Filter Mask ID : 0	(Hex)
-		

①运行模式:

1. Preinstall: 仅接收预设配置的 5 个 ID 匹配的数据

(1) 接收到 Get 32byte ID 后应答,再连续发送 32 个数据。

(16个通道每个通道2个字节)

(2) 接收到 Get 8byte_1 ID 后应答,发送 8 个数据。

(1-4 通道每个通道 2 个字节)

(3) 接收到 Get 8byte_2 ID 后应答,发送 8 个数据。

(5-8通道每个通道2个字节)

(4) 接收到 Get 8byte_3 ID 后应答,发送 8 个数据。

(9-12 通道每个通道 2 个字节)

(5) 接收到 Get 8byte_4 ID 后应答,发送 8 个数据。

(13-16 通道每个通道 2 个字节)

2. User:根据(匹配 ID)和(掩码 ID)的配置接收数据,仅应答, 不发送额外的数据

3. Silent:可以接收到选择 Silent 模式前工作模式 ID 数据,但不会 发送应答信号 注意! 该模式下仅接收远程帧数据

②ID 模式:

(1)Standard(标准 ID)可设置 ID 范围 0-7FF

(2)Extended(扩展 ID)可设置 ID 范围 0-1FFFFFFF

注意:禁止7位都为隐性(禁止设定:ID=1111111XXXX) ③恢复默认参数按钮

(1)按下恢复默认按钮将恢复本页的所有参数 ④预设 ID

(1)获取通道数据的 ID(参考 Preinstall 描述) ⑤用户模式过滤 ID 设置

如果只想接收 CAN ID 为 0x317 的标准帧,则设置方法如下:

Fileter ID: 设为 317 对应的二进制位 011 0001 0111。

Fileter Mask ID: 设为 1FFFFFF 对应的二进制位 111 1111 1111

如果想接收 CAN ID 为 0x310 至 0x317 的标准帧,则设置方法如下: Fileter Mask ID 中每个位的意义:

(1) 位 x 设定为 1, 接收到 ID 的位 x 必须与 Fileter ID 位 x 一致, 否则将被忽略

(2) 位 x 设定为 0, 接收到 ID 的位 x 不关心是否匹配, 只要为 1 的 位全部匹配将会接收数据并应答, 假设 Fileter Mask ID 设为 0 那么所 有消息都会接收并应答。

(3) 发送内容配置

Running Mode : Preinstall 7			
Extended Frame 2 11 2 3 4 ID1: (hex) ID2: (hex) ID3: (hex) ID4: (hex) Cycle Time : 10 ms Active Mode			
User			
Length : 8 💌 Remote Request			
Cycle Time : 10 ms AutoSender 🤉			
ID : (hex) 5 Extended Frame			
Data :(hex) 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7			
Send			

①运行模式: (与 ID 过滤配置一致)

②预设模式参数:

(1)Extended Frame 不勾选,可设置 ID 范围 0-7FF

(2)Extended Frame 勾选可设置 ID 范围 0-1FFFFFFF

注意:禁止7位都为隐性(禁止设定: ID=1111111XXXX)

(3)ID1: 发送通道 1-4 数据的 ID

(4)ID2: 发送通道 5-8 数据的 ID

(5)ID3: 发送通道 9-12 数据的 ID

(6)ID4: 发送通道 13-16 数据的 ID

(7)Cycle Time:主动发送通道数据的周期

(8)Active Mode:主动发送模式,Active Mode 勾选的情况下,无需向 SBUS_PPM_to_CAN 模块发送获取数据命令,设备会以 Cycle Time 设置的时间周期性的发送通道数据至 CAN 总线上

③用户模式参数

- (1) Length:用户自定义数据发送长度
- (2) Remote Request
- (3) Cycle Time:自动发送通道数据的周期

(4) AutoSender:自动发送模式,AutoSender 勾选的情况下,设备会以 Cycle Time 设置的时间周期性的发送设定的用户数据至 CAN 总线上

(5) ID:发送数据的 ID

- (6) Extended Frame 不勾选,可设置 ID 范围 0-7FF
- (7) Extended Frame 勾选可设置 ID 范围 0-1FFFFFFF

注意:禁止7位都为隐性(禁止设定: ID=1111111XXXX)

- (8) Data:需要发送的数据
- (9) Send:发送数据按钮,每按一次发送一次数据